Membrane material	Pore size	Cut-off	Porosity	Function of the ceramic membranes
\(\text{TiO}_2\)	800 nm	400 nm	800 nm	Recovery of texturizing water in textile industry with ceramic Inopor ultra filtration membranes
400 nm	250 nm	400 nm	Concentrate	
200 nm	100 nm	200 nm	Permeate	
100 nm	70 nm	100 nm	Feed	

Membrane 1
- Feed: pH 7.17, COD 1500 mg/L, NTU 0, COD reduction 54.80%
- Permeate: pH 7.58, COD 678 mg/L, NTU 0
- Concentrate: pH 7.47, COD 1700 mg/L, NTU 0.3

Membrane 2
- Feed: pH 7.17, COD 1480 mg/L, NTU 0.1, COD reduction 83.78%
- Permeate: pH 7.56, COD 240 mg/L, NTU 0.1
- Concentrate: pH 7.44, COD 1710 mg/L, NTU 0.4

Membrane 3
- Feed: pH 7.20, COD 1500 mg/L, NTU 0.3, COD reduction 85.53%
- Permeate: pH 7.57, COD 217 mg/L, NTU 0.5
- Concentrate: pH 7.44, COD 1900 mg/L, NTU 0.3

Membrane 4
- Feed: pH 7.19, COD 1470 mg/L, NTU 0.3, COD reduction 93.69%
- Permeate: pH 7.44, COD 92.7 mg/L, NTU 0
- Concentrate: pH 7.57, COD 1830 mg/L, NTU 0.3

Technical parameters

<table>
<thead>
<tr>
<th>Membrane material</th>
<th>Pore size</th>
<th>Cut-off</th>
<th>Porosity</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{TiO}_2)</td>
<td>800 nm</td>
<td>400 nm</td>
<td>800 nm</td>
</tr>
<tr>
<td>400 nm</td>
<td>250 nm</td>
<td>400 nm</td>
<td></td>
</tr>
<tr>
<td>200 nm</td>
<td>100 nm</td>
<td>200 nm</td>
<td></td>
</tr>
<tr>
<td>100 nm</td>
<td>70 nm</td>
<td>100 nm</td>
<td></td>
</tr>
</tbody>
</table>

Example large scale system

Analysis and technical data

<table>
<thead>
<tr>
<th>Sample</th>
<th>Conductivity (µS/cm)</th>
<th>pH</th>
<th>COD (mg/L)</th>
<th>NTU (clouding)</th>
<th>Reduction COD (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed</td>
<td>612</td>
<td>7.17</td>
<td>1500</td>
<td>0</td>
<td>54.80</td>
</tr>
<tr>
<td>Permeate</td>
<td>541</td>
<td>7.58</td>
<td>678</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Concentrate</td>
<td>615</td>
<td>7.47</td>
<td>1700</td>
<td>0.3</td>
<td></td>
</tr>
</tbody>
</table>

Membranes

Recovery of texturizing water in textile industry with ceramic Inopor ultra filtration membranes

Inopor – a brand of Rauschert Group

www.rauschert.com
Initial Situation

The discharge of scouring water wastewater causes significant increase in COD of processed wastewater.

Objective of piloting

- Determine the level of filtration necessary to clean the scouring wastewater for reuse in the sourcing machine.
- Test if the quality of the filtered scouring water is adequate for reuse in the scouring process.

Results

- Filtration in the ultrafilter range is adequate to clean the scouring wastewater for reuse in the scouring machine.
- The footprint and operating cost of scouring water recycling is low and can be integrated into the existing process.
- Quality of the filtered scouring water is adequate for use in the scouring process.

Advantages of ceramic inopor membranes

- high chemical resistance
- bio inert (e.g. against bacteria)
- high thermal resistance
- good steam sterilization
- back flushing possible, high compressive strength
- no material degradation
- optimal regeneration
- high permeate flux rates
- can be stored dry, after cleaning
- high resistance against abrasive particles
- high durability

Applications in the textile industry

- Maintenance or disposal of cleaning liquors and washing water (e.g. removal of textile sizing)
- Industrial wastewater recycling (e.g. decoloring in dyeing mills)
- Recycling of wastewater in the printing industry
- Separation of oil/water emulsions

We welcome your inquiries!

Contact Information

Rauschert Distribution GmbH
Business Unit Inopor
Industriestrasse 1
98669 Veilsdorf
Germany
Phone: +49 (0)3685 685-257
Fax: +49 (0)3685 685-230
E-Mail: contact@inopor.com

www.inopor.com