


# Membranes and geometries

#### Ceramic membranes – multifunctional in application:

Our ceramic cross-flow elements are tubular geometries and have a certain number of channels with different channel diameters depending on the application. One or more filter elements can be combined in a stainless-steel housing and form a module. These modules are installed in filtration systems.

The process medium (feed) flows at a certain velocity through the channels over the membrane layer (active layer) coated on the inside. The operating pressure is the driving force for the filtration process, separating the process medium into permeate and concentrate. Particles larger than the pores of the membrane are retained (concentrate), while smaller particles pass through the pores of the membrane and the support and are collected in the module as the permeate.

Ceramic membranes are used in a growing range of applications due to their high reliability and high chemical resistance against concentrated caustics and acids.









Managing director Dr. Richard Metzler







## Membranes and geometries

#### Membrane materials and pore sizes:

Inopor® offers high quality ceramic elements with membrane layers in a wide range of pore sizes including microfiltration, ultrafiltration and cutting edge nanofiltration. These membrane layers are produced with state-of-the-art membrane manufacturing technology.

The product offering includes specialized membrane elements\*1; e.g. with a modified membrane layer (hydrophobic properties) or for abrasive environments.

|                           | Membrane<br>material                               | Pore size | Porosity  |                    | Membrane<br>material | Pore size         | Cut-Off* <sup>2</sup> | Porosity  |  |
|---------------------------|----------------------------------------------------|-----------|-----------|--------------------|----------------------|-------------------|-----------------------|-----------|--|
| inopor <sup>®</sup> micro | α-Al <sub>2</sub> O <sub>3</sub>                   | 1100 nm   | 40 - 55 % | inopor® ultra      | TiO <sub>2</sub>     | 30 nm             | 100 kDa               |           |  |
|                           |                                                    | 800 nm    |           |                    |                      | 10 nm             | 20 kDa                | 30 - 55 % |  |
|                           |                                                    | 600 nm    |           |                    |                      | 5 nm              | 8.5 kDa               |           |  |
|                           |                                                    | 400 nm    |           |                    | ZrO <sub>2</sub>     | 3 nm              | 2 kDa                 |           |  |
|                           |                                                    | 200 nm    |           | 40<br>inopor® nano | TiO <sub>2</sub>     | 1.0 nm            | 750 Da                | 30 - 40 % |  |
|                           |                                                    | 100 nm    |           |                    |                      | 0.9 nm            | 450 Da                |           |  |
|                           |                                                    | 70 nm     |           |                    |                      | LC <sup>3</sup> * | 200 Da                | 30        |  |
|                           | α-Al <sub>2</sub> O <sub>3</sub> /ZrO <sub>2</sub> | 50 nm     |           |                    |                      |                   |                       |           |  |

### Membrane geometries:

Cross-flow elements consist of a support structure and the membrane. The support is made of  $\alpha$ -Al<sub>2</sub>O<sub>3</sub>, while the individual membranes can be made of different ceramic materials.

Industrial-scale geometries are available in standard lengths of 1178 and 1200 mm. Lengths between 100 and 1200 mm are available upon request.

Our geometries are sealed on both ends, using one of the following materials: Ceramic, Glass and Teflon.

Custom geometries can be developed and quoted upon request.

| Testing geometry<br>length 500 mm |    | Outer<br>diameter*4 | Inner<br>diameter | Channels | Specific<br>membrane<br>area | Membrane<br>area<br>(1200 mm length) | Face area of channels |
|-----------------------------------|----|---------------------|-------------------|----------|------------------------------|--------------------------------------|-----------------------|
| Ceramic element                   |    | [mm]                | [mm]              | no.      | $[\frac{m^2}{m}]$            | $[m^2]$                              | $[mm^2]$              |
|                                   | AA | 10                  | 7                 | 1        | 0.022                        | 0.026                                | 38.5                  |



## Membranes and geometries

| Industrial-sca<br>Outer diame                       | lle geometries<br>ter 25 mm | Outer<br>diameter* <sup>4</sup> | Inner<br>diameter | Channels | Specific<br>membrane<br>area | Membrane<br>area                     | Face area<br>of channels |
|-----------------------------------------------------|-----------------------------|---------------------------------|-------------------|----------|------------------------------|--------------------------------------|--------------------------|
| Ceramic element                                     |                             | [mm]                            | [mm]              | no.      | $\left[\frac{m^2}{m}\right]$ | $[m^2]$                              | $[mm^2]$                 |
|                                                     | ВА                          | 25                              | 6                 | 7        | 0.13                         | 0.16                                 | 197.9                    |
| 0000                                                | CA                          | 25                              | 3.5               | 19       | 0.21                         | 0.25                                 | 182.8                    |
|                                                     | GB                          | 25                              | 2.8               | 31       | 0.273                        | 0.328                                | 190.9                    |
|                                                     | EC                          | 25                              | 2                 | 61       | 0.383                        | 0.460                                | 191.6                    |
| Industrial-scale geometries<br>Outer diameter 41 mm |                             | Outer<br>diameter*4             | Inner<br>diameter | Channels | Specific<br>membrane<br>area | Membrane<br>area<br>(1200 mm length) | Face area of channels    |
| Ceramic                                             | Ceramic element             |                                 | [mm]              | no.      | $\left[\frac{m^2}{m}\right]$ | $[m^2]$                              | [ mm²]                   |
| 0000                                                | CC                          | 41                              | 6                 | 19       | 0.36                         | 0.43                                 | 537.2                    |
| 0000<br>000000<br>000000<br>000000                  | MD                          | 41                              | 3.8               | 37       | 0.49                         | 0.59                                 | 511.5                    |
| 00000                                               | EE                          | 41                              | 3.4               | 61       | 0.723                        | 0.868                                | 674.0                    |
|                                                     | НА                          | 41                              | 2                 | 163      | 1.094                        | 1.313                                | 580.4                    |

### Please contact us for further support.

Information in this document about products, systems and/or services may change without notice due to technical development. There is no guarantee of success based on the information provided. It is the user's responsibility to validate products in their unique application. Please consult your Inopor contact or visit <a href="https://www.inopor.com">www.inopor.com</a> for more information.

<sup>\*1</sup> Specialized membranes may not be available in all configuration. Please contact us for availability.

<sup>\*2</sup> The cut-off was determined indirectly by measurement of polyethylene glycol (PEG) retention in aqueous solution. The value should be used as a guideline and a testing starting point since retention varies with application and conditions. Membrane selection is the responsibility of the purchaser. We are happy to offer application laboratory testing to support the selection.

The LC membranes are our finest membrane and development. Currently, these membranes are manufactured for pilot testing, but are commercially available.

<sup>\*4</sup> The outer diameter may increase due to the end sealing. Glass end sealing results in the largest increase.